Was ist Licht und woher kommt es?
Foto von Nadine Shaabana auf Unsplash
Zuhören und folgen (nur Englisch)
Einführung – Was ist Licht?
Wir Nicht-Wissenschaftler gehen davon aus, dass Licht einfach nur Licht ist, und machen uns kaum Gedanken darüber, woher es kommt oder wie es erzeugt wird. Wenn Sie also mit Licht, Beleuchtung oder sogar Indoor-Farming zu tun haben, sollten Sie das wissen.
Dieser Artikel lüftet den Vorhang zum Thema „Was ist Licht?“.
Abb. 1 Foto von Umberto auf Unsplash
Licht ist eine Freisetzung von Energie.
Kurz gesagt, Photonen des Lichts, die von einer Lichtquelle (z. B. einer Glühbirne) ausgestrahlt werden, sind einfach eine Freisetzung von Energie. Um dies zu erklären, können wir die Analogie eines reißenden Gummibandes verwenden.
Nehmen wir an, Sie wenden physikalische Energie auf, um das Gummiband auseinander zu ziehen. Dadurch wird die Energie als potenzielle Energie in das Gummibandmaterial übertragen. Wenn du ein Ende loslässt, zieht sich das Gummiband schnell zusammen und du hörst ein SNAP! Das Knacken ist die potenzielle Energie, die in Form von Schall freigesetzt wird.
Lassen Sie uns jetzt über Licht sprechen. Der Glühfaden einer Glühbirne besteht aus einem Material namens Wolfram. Wolfram besteht aus Molekülen, d. h. aus einer Ansammlung von Atomen, die miteinander verbunden sind. Das Atom hat ein Zentrum, den so genannten Kern, um den herum Elektronen kreisen.
Abb. 3a Glühfaden in einer Glühbirne
Beginnen wir mit dem Elektron auf seiner natürlichen niedrigen Umlaufbahn (Abb. 4-a).
Wenn Sie der Glühbirne Energie oder Strom zuführen, wird das Elektron im Atom des Glühfadens auf eine höhere Umlaufbahn angeregt und erhält potenzielle Energie (Abb. 4-b).
Wenn das Elektron in seinen niedrigeren oder natürlichen Zustand zurückschnappt (Abb. 4-c), gibt es die Energie wieder frei – aber statt eines Geräusches setzt es ein Lichtphoton frei.
Ergo ist Licht einfach eine Freisetzung von Energie – und obwohl sich andere Lichtarten (LEDs, Leuchtstoffröhren usw.) in vielerlei Hinsicht unterscheiden, haben sie doch das gleiche Endergebnis, nämlich die Emission von Lichtphotonen, indem sie Elektronen aus höheren Orbitalen oder Zuständen in niedrigere fallen lassen.
Elektronen bleiben nicht auf einer höheren Umlaufbahn, auch nicht bei konstantem Strom.
Warum bleiben die Elektronen nicht auf einer höheren Umlaufbahn – schließlich wird ja ständig Strom angelegt.
Elektronen in einer hohen Umlaufbahn sind wie jemand auf einem Hochseil (Drahtseil). Sie befinden sich immer in einem sehr prekären, instabilen Zustand, und es ist leicht, dass sie aus der hohen Umlaufbahn fallen. Aber warum sind Elektronen in diesem Zustand instabil?
Physik und Quantenmechanik
Kurz gesagt, subatomare Teilchen wie Elektronen sind seltsam. Sie leben in der Welt des ganz Kleinen, in der Welt der Quantenmechanik. Das bedeutet, dass sich die Dinge nicht so verhalten wie unsere eigene weltliche Existenz, die wir berühren, hören, sehen und riechen.
Die bloße Existenz eines Elektrons an einem bestimmten Ort ist ungewiss, was seine Position auf dem Hochseil unsicher macht. So fallen sie leicht und senden ein Lichtphoton aus.
Durch die ständige Stromzufuhr wird das nächste Elektron in den höheren Zustand gehoben und fällt bald wieder ab – und dieses ständige Auf und Ab von Milliarden von Elektronen sorgt für den Lichtstrom einer Glühbirne.
Klassische und Quantenbetrachtung von Elektronen (Vertiefung).
Einige werden argumentieren, dass meine klassische Beschreibung des Atoms, des Kerns und der kreisenden Elektronen ungenau ist. Ich stimme zu, aber so wird es immer noch in den Klassenzimmern gelehrt, um den Schülern den Einstieg in die Komplexität der Physik und Chemie zu erleichtern.
In der Quantenwelt existiert das Elektron als eine Elektronenwolke. Daraus lässt sich schließen, dass das Elektron ständig in der Umgebung des Kerns auftaucht und verschwindet, aber nie an einem Ort bleibt, wenn es nicht beobachtet wird.
Machen Sie sich keine Sorgen, wenn Sie es nicht verstehen – selbst unsere klügsten Wissenschaftler haben die Quantenmechanik noch nicht vollständig entschlüsselt. Aber deshalb bleiben Elektronen seltsam, und deshalb wird ihre Position in Zeit und Raum immer prekär sein.
Licht ist sowohl Teilchen als auch Welle
Es ist einfach, Licht als Teilchen wahrzunehmen, weil es sich so verhält: Es prallt an Wänden und Spiegeln ab, ähnlich wie ein Tennisball. Auch wenn wir die Lichtteilchen nicht sehen können, schließen wir aufgrund ihres Verhaltens auf sie.
Licht ist gleichzeitig auch eine Welle, nicht weil wir Licht als wässrige Wellen sehen können, sondern weil es sich so verhält. Es gab ein berühmtes Experiment, das so genannte Doppelspaltexperiment, bei dem Licht durch zwei Schlitze geschickt wurde, und das Ergebnis ähnelte überraschenderweise dem, wie Wasserwellen durch dieselben beiden Schlitze laufen. Da sich Licht sowohl als Teilchen als auch als Welle verhielt, ging man davon aus, dass Licht beides ist.
Mit einem Spektrometer zwischen Teilchen und Wellen unterscheiden
Ein Belichtungsmesser kann sowohl die Teilchen- als auch die Wellenaspekte des Lichts messen und anzeigen. Licht besteht aus Teilchen, die Photonen genannt werden. Ein Spektrometer oder ein Lichtmessgerät kann die Anzahl der vom Licht kommenden Photonen messen, indem es LUX oder PPFD (Wachstumslampen) misst. Je höher der LUX-Wert, desto mehr Photonen treffen auf einen Quadratmeter.
Ein Spektrometer ist ein hochentwickeltes Lichtmessgerät, das auch Wellen messen kann, und diese Wellen haben eine Frequenz, die mit einer bestimmten Farbe verbunden ist. Blaue Farben haben kürzere Frequenzen und rote Farben haben längere Frequenzen.
Jedes Photon hat eine zugehörige Wellenlängenfrequenz, die seine Farbe bestimmt, und ein mit dem Spektrometer aufgenommenes Spektrum kann die relative Anzahl der Photonen für jede sichtbare Farbe in einem Licht zeigen.
Abb. 11 Blaue Farben haben kürzere Frequenzen, rote haben längere
Schlussfolgerung – Vorhang auf für das, was Licht ist.
Licht ist eine Freisetzung von Energie, genau wie ein schnappendes Gummiband. Man muss verstehen, dass umkreisende Elektronen in einen höheren Zustand versetzt werden. Aufgrund der Ungewissheit ihrer Existenz fallen Elektronen leicht in ihren natürlichen Zustand zurück und geben dabei Energie in Form von Photonen ab. Dieses ständige Auf und Ab von Milliarden von Elektronen erzeugt einen Lichtstrom, den wir nicht mehr als selbstverständlich hinnehmen müssen.
Jeder kann ein Wissenschaftler sein!
Abb. 12 Bei jeder Beleuchtung werden mit Hilfe von fallenden Elektronen Photonen des Lichts erzeugt.
Abb. 13 – MK350S Premium-Spektrometer mit vollem Funktionsumfang
Das MK350S Premium ist das voll ausgestattete Spektralphotometer von UPRtek.
Lichtkritische Projekte sind mit unhandlichen Instrumenten konfrontiert, denen es an Genauigkeit, Flexibilität, Komfort, Datenspeicherung und Konnektivität zu anderen Geräten mangelt.
Das MK350S Premium Handspektrometer ist ein universell einsetzbares Gerät in Laborqualität, das von Forschern, Lehrern, Beleuchtungsdesignern, LED-Herstellern und Lichtnormenorganisationen verwendet wird. Es bietet eine Vielzahl von Funktionen und Beleuchtungsmetriken, mit denen sich jede Beleuchtungsaufgabe lösen lässt.
Handbuch-Serie
Das Flicker-Handbuch
Alles, was Sie über Flimmern wissen müssen, ein heimtückisches, potenziell schwerwiegendes Beleuchtungsartefakt, das die visuelle Sicherheit an öffentlichen Orten wie Krankenhäusern, Büros, Bibliotheken und mehr beeinträchtigt ...
Über UPRtek
United Power Forschung und Technologie
UPRtek (gegründet 2010) ist ein Hersteller von tragbaren, hochpräzisen Lichtmessgeräten: Handspektrometer, PAR-Messgeräte, Spektralradiometer, Lichtkalibrierungslösungen. Der Hauptsitz, die Forschung und Entwicklung sowie die Produktion von UPRtek befinden sich in Taiwan, mit weltweiter Vertretung durch unser zertifiziertes Globale Wiederverkäufer.
Ankündigungen
Was ist ein Spektrometer, Spektralphotometer, Spektroradiometer?
Im Bereich der Spektralgeräte stechen drei Geräte hervor: das Spektrometer, das Spektralfotometer und das Spektroradiometer.
Diese Begriffe werden jedoch so häufig synonym verwendet, dass wir verstehen, warum das verwirrend sein kann. Deshalb haben wir uns verpflichtet gefühlt, ihre Unterschiede in einem kurzen Artikel zu klären. Unterscheiden Sie diese Begriffe wie ein Profi!
Kategorie
0 Kommentare